GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells.

نویسندگان

  • Sungwon Choi
  • Mike Lee
  • Amy L Shiu
  • Sek Jin Yo
  • Gunnel Halldén
  • Gregory W Aponte
چکیده

In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein-coupled receptor, GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium-mediated signaling events in intestinal epithelial cells raises a possibility that GPR93 might be involved in the protein hydrolysate induction of CCK expression and/or secretion. Using the enteroendocrine STC-1 cells as a model, the present study demonstrates that increasing expression of GPR93 amplifies the peptone induction of endogenous CCK mRNA levels. A similar increase in CCK transcription, indicated by the luciferase reporter activity driven by an 820-bp CCK promoter, is also observed in response to peptone at a dose as little as 6.25 mg/ml, but not to lysophosphatidic acid (LPA), an agonist of GPR93. We discovered that the upregulation of CCK transcription involves ERK1/2, PKA, and calmodulin-dependent protein kinase-mediated pathways. Additionally, GPR93 activation by peptone induces a response in CCK release at 15 min, which continues over a 2-h period. The cAMP level in STC-1 cells overexpressing GPR93 is induced at a greater extent by peptone than by LPA, suggesting a possible explanation of the different effects of peptone and LPA on CCK transcription and secretion. Our data indicate that GPR93 can contribute to the observed induction of CCK expression and secretion by peptone and provide evidence that G protein-coupled receptors can transduce dietary luminal signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPR93 Activation by Protein Hydrolysate Induces CCK Transcription and Secretion in STC-1 Cells By

In the intestinal lumen, protein hydrolysate increases the transcription and release of cholecystokinin (CCK) from enteroendocrine cells of the duodenal-jejunal mucosa. Our recent discovery that a G protein coupled receptor (GPCR), GPR93, is activated by dietary protein hydrolysate causing induced intracellular calcium mediated signaling events in intestinal epithelial cells, raises a possibili...

متن کامل

Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1.

Dietary protein is a major stimulant for cholecystokinin (CCK) secretion by the intestinal I cell, however, the mechanism by which protein is detected is unknown. Indirect functional evidence suggests that PepT1 may play a role in CCK-mediated changes in gastric motor function. However, it is unclear whether this oligopeptide transporter directly or indirectly activates the I cell. Using both t...

متن کامل

Peptones stimulate cholecystokinin secretion and gene transcription in the intestinal cell line STC-1.

In rats, protein hydrolysates (peptones) stimulate cholecystokinin (CCK) release both in vivo and in a model of isolated vascularly perfused duodeno-jejunum. However, the mechanisms involved in peptone-induced stimulation of CCK cells are not well understood. In particular, the possibility that peptones may directly interact with CCK-producing cells to stimulate CCK release and gene transcripti...

متن کامل

Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes.

G protein-coupled receptors (GPCRs) have the potential to play a role as molecular sensors responsive to luminal dietary contents. Although such a role for GPCRs has been implicated in the intestinal response to protein hydrolysate, no GPCR directly involved in this process has been previously identified. In the present study, for the first time, we identified GPR93 expression in enterocytes an...

متن کامل

Effect of five taste ligands on the release of CCK from an enteroendocrine cell line, STC-1.

Here, we investigated which taste ligand induces the CCK (cholecystokinin) release from intestinal STC-1 cells. We first developed a new assay to measure the release of CCK. The expression vector for CCK type A receptor (CCKAR) was permanently introduced into HEK293T cells and a cell line was established (CCKAR/HEK). Then, STC-1 cells were treated with taste ligands and the incubated buffer of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007